首页> 外文OA文献 >Abnormal crowd behavior detection using novel optical flow-based features
【2h】

Abnormal crowd behavior detection using novel optical flow-based features

机译:使用新颖的基于光流的功能进行异常人群行为检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we propose a novel optical flow based features for abnormal crowd behaviour detection. The\udproposed feature is mainly based on the angle difference computed between the optical flow vectors in the current frame and in the previous frame at each pixel location. The angle difference information is also combined with the optical flow magnitude to produce new, effective and\uddirection invariant event features. A one-class SVM is utilized to learn normal crowd behavior. If a test sample\uddeviates significantly from the normal behavior, it is detected as abnormal crowd behavior. Although there are\udmany optical flow based features for crowd behaviour analysis, this is the first time the angle difference between optical flow vectors in the current frame and in the previous frame is considered as a anomaly feature.\udEvaluations on UMN and PETS2009 datasets show that the proposed method performs competitive results compared to the state-of-the-art methods.
机译:在本文中,我们提出了一种新颖的基于光流的特征,用于异常人群行为检测。提议的特征主要基于在每个像素位置的当前帧和前一帧中的光流矢量之间计算出的角度差。角度差信息还与光流大小相结合,以产生新的,有效的和\方向不变的事件特征。一类SVM用于学习正常人群行为。如果测试样本与正常行为明显不同,则将其检测为异常人群行为。尽管存在\ udman基于光流的特征来进行人群行为分析,但这是第一次将当前帧和前一帧中的光流矢量之间的角度差视为异常特征。\ ud对UMN和PETS2009数据集的评估显示与现有技术相比,该方法具有竞争优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号